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The nonlinear development of the Batchelor-Nitsche instability (of a periodically 
stratified fluid) is considered, utilizing the disparity between vertical and horizontal 
scales of motion. The resulting evolution equation is used to show that the preferred 
pattern of convection takes the form of rolls, and that the motion evolves to larger and 
larger horizontal scales as time increases. 

1. Introduction 
In a recent paper, Batchelor & Nitsche (1991, hereinafter referred to as BN) have 

identified a previously unremarked instability of a periodically stratified expanse of 
fluid (for example, one for which the temperature gradient varies sinusoidally in the 
vertical direction). It turns out that all such structures are unstable in an unbounded 
fluid, and the instability is dominated by vertical velocities that vary slowly in the 
horizontal directions. BN only considered the linearized stability problem, and so 
obtained no information as to the preferred planform of the resulting columnar 
convection. The calculated discrepancy between vertical and horizontal scales suggests, 
however, that investigation of the nonlinear development may be made tractable by 
employing asymptotic methods, such as have been used previously on the problem of 
convection between poorly conducting boundaries (Chapman & Proctor 1980; Proctor 
1981) and for convection (e.g. salt fingering) that takes place in tall thin columns 
(Proctor & Holyer 1985). In the present paper we adopt an analogous approach, and 
obtain a coupled pair of partial differential equations in time and the horizontal 
coordinate. If these equations are linearized, BN’s results are recovered in the limit of 
weak stratification and long horizontal wavelength, while the nonlinear terms can be 
shown to select rolls (rather than, for example, squares or hexagons) as the preferred 
mode of convection. Numerical solutions of these equations are also given, with a view 
to understanding wavenumber selection in the nonlinear regime. 

2. Governing equations and scaling 
We consider an unbounded region of fluid of kinematic viscosity v, and thermal 

dfiusivity K. Gravity gf is in the negative z-direction in a Cartesian coordinate system 
(x, y ,  2). We assume that conditions are such that the Boussinesq approximation 
holds. The basic state of the fluid whose instability we propose to investigate is one 
of zero velocity, and a (time-independent) temperature dependence of the form 
T = T,-ATsinz/d. In common with BN, we must admit that this distribution is 
somewhat artificial since we are considering diffusive instabilities that evolve no faster 
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than it would take any initial temperature stratification to decay. Indeed, our analysis 
deals with evolution that occurs slowly on the diffusive timescale. The problem as 
posed, however, is worth studying as a paradigm of a novel mode of instability; 
although the precise state envisaged would have to be maintained artificially by some 
distribution of sources and sinks of heat and/or concentration, it will become unstable 
in a way that will give a useful guide in more realistic situations. Although our analysis 
depends on a small quantity E representing the horizontal wavenumber of the 
disturbance, this is not a parameter whose value is fixed in terms of physical quantities 
but one that should be thought of as a way of ordering terms in the equations so as 
to extract useful analytical information, as is regularly done for example in quantum 
mechanics. We anticipate that our results will remain reasonably accurate even when 
E is not very small, and so do not regard the existence of the expansion scheme as an 
important further constraint. 

If we denote the fluid velocity by Ku/d, the total temperature by 

T =  T,+AT(O-sinz/d), 

and non-dimensionalize (x,y,z) with respect to d and time with respect to d ' / q  then 
the (dimensionless) equations for u and 8 take the form 

V * u  = 0. 

Here p is the non-dimensional (reduced) pressure, and the dimensionless constants are 
the Prandtl number r and Rayleigh number R defined by 

V gdATd3 
g = -  R=- 

K' KV 

where d is the coefficient of thermal expansion. From now on all quantities will be 
assumed dimensionless. 

BN have considered the linearized version of these equations and are able to show 
that the latter possesses growing solutions for arbitrarily small R, provided that the 
horizontal wavelength of the disturbance is sufficiently large. For small horizontal 
wavenumbers a of order R, the growth rate s of the gravest mode (for which u-z" and 
8 are even in z )  is given as the positive root of the quadratic 

( S / U  + 2) (S + a') = &?R2 (2.3) 

(cf. BN equation (5.17), in the limit a+O, s = @a2), R = O(a)). It is clear from (2.3) 
that however small R may be, there is a positive growth rate for sufficiently small a. 

The result (2.3), together with other results implicit in the details of BN (especially 
their equation (5.19)), suggests the appropriate scalings for parameters and variables 
in the long-wavelength limit. We know that R and a are both small in this limit, and 
of the same order, and so we define the parameter E( < 1) as a measure of their size. 
We might define 6 to equal R, but it is helpful in the sequel to allow R to vary separately 
from E ;  as discussed above we should then think of the latter as a marker labelling 
orders of smallness. 



Nonlinear development of the Batchelor-Nitsche instability 315 

We make the substitutions 

1 (2.4) 
R = er ; a, = a,; (a,, a,) = E v H  = €(a,, a?), 

u = (%, 4 = W,(5, z), wo(5) + E3G(5, 4); p = Ed, 
where 5 = ( L Y ) ,  
and suppose that all quantities depend on the slow time r. Then the equations become 
(with a/az = D) 

ae 
ar 

E ' - + + ~ D O + E ~ ( D ( ~ ~ ) + V ~ . ( ~ ~ ~ ~ ) )  = w , c o s z + E ~ ~ c o s z + D ' ~ + E ' V ~ ~ ,  (2.5) 

1 a$ '[ EF+ s5-+ c3(wO D6 +V,. (a, wo) + D(Gwo)) + O(8) 
U ar 

= -EDP + s2V& wo + e3(D26 + saV& 6) + Er8, (2.7) 

In the next section we solve these equations sequentially to obtain evolution equations 
that depend only on 5 and 7. We shall suppose throughout that g = O(1); other, more 
exotic expansion schemes based (for example) on g scaling with some power of E are 
deferred to future work. In principle all the quantities defined in (2.4) should be 
expanded in powers of e ;  it turns out, however, that expansion of the velocity variables 
w,, and ti, is not necessary as the final equations involve only their leading-order parts. 
Note also that the ansatz does not include any z-independent horizontal flows. The 
scaling adopted here could certainly accommodate such flows, but there is no 
mechanism for sustaining them at the O(2) level, and if they only appear at higher 
order than this they have no influence on the leading-order dynamics, provided that 

D6+VH.(fiH) = 0. (2.8) 

(r = O(1). 

3. The evolution equation 

We begin with equation (2.5); writing 8 = O0+s8, + . . .we obtain at leading order 

This is solved by 8, = A(& r )  cos z + B(& 7) sin z,  (3 .2~)  
where A = w0/( 1 + w:), B = W;/ ( I  + w:). (3.2b) 
We notice immediately that the nonlinear term means that the solutions are no longer 
even about z = 0 (though the leading-order velocity field wo is independent of z). Then 
at O(E) in (2.7) we have (expanding p" in powers of e) 

3.1. Derivation and simple properties 

W, DB, = W, cos z + D260. (3.1) 

0 = -Dp",+r8,. (3.3) 
Following BN, we seek disturbances that remain bounded in z and, in particular, 
require that the z-dependent quantities are actually 2x- eriodic in z .  As we shall see 
below, this implies that ( d o )  = 0, where ( a )  = (1/2n)fi".dz; then (3.3) is solved by 

Po = r[-Bcosz+Asinz]. (3.4) 
11-2 
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The leading-order terms in (2.6) give 

and so ii = V, @, where 

It can now be seen that ( P o )  = 0 is necessary for @ to be bounded in z. Thus 

(l/a)w,Dii, = -VHDo+D2i2H, 

(l/c~)w,D@ = -do+D2@. 

@ = Pcosz+Qsinz, 

where r rwi( 1 + a) P =  B+-  - 
1 + w:/a2 

( “ 0 ” ) -  rw,<w; - u) 
Q =  1+w;/a2 --A+a -a(l+w;)(l+w;/u2)’ 

Returning to (2.5) at O(E), we find 

W ,  DB, = D28,; 

(3.7) 

since we are looking for bounded solutions, the only acceptable solution of this 
equation is 8, = c(< ,T) .  The equation (2.5) at O(e2), O(2)  gives 

(3.94 aeo/a7 - v; 8, = - w0 DO, + we2, 
aB1/a7-V&B1 + D ( ~ ~ , ) + V , ~ ( ~ ~ , ~ , ) - ~ C O S Z  = -woDB,+D2B,. (3.9b) 

Equation (3 .94 determines the z-dependent part of 8, uniquely in terms of 8,. while 
(3.9 b) possesses the non-trivial solvability condition 

(3.10) 
ac 
a7 --Vg c + VH. (il, 8,) - (6 cos Z) = 0. 

Now assuming periodicity in z we have 

(6cosz) = (-DGsinz) = V,.(ii,sinz) = tVkQ, (3.1 1) 

while V , * ( S H 8 , )  = $W,.(AV,P+BV,Q). (3.12) 

Finally, we examine (2.7) at O(2) to obtain 

= -Dp”,+V&w,+rB,; (3.13) 

since w, and 8, are independent of z and we require periodic solutions for all quantities 
including the pressure we take d1 = 0 so that we have 

a a7 

1 aw, 
a a7 ___- V g  w, = rc. (3.14) 

Now we write (3.10) in terms of W ,  and c to produce a closed system. Using (3.2) and 
(3.7) we obtain 

1 W wt( 1 + u) 
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A primitive check on the rather involved sequence of transformations leading to (3.14) 
and (3.15) is provided by linearizing the latter. We obtain 

i3c/aT-V&c+$v;w0 = 0. (3.16) 
Then, taking (3.14) and (3.16) together, and looking for solutions proportional to 

(#/a+ I W ) ( S +  IW) = ~z1k12, (3.17) 
in agreement with (2.3). 

Although (3.15) and (3.16) cannot be called simple they have the great merit, for 
computational purposes, that they do not depend upon the vertical coordinate z, and 
in fact the apparently ungainly nonlinear term involves just two derivatives of w,; thus 
numerical solution by a finite-difference method presents little difficulty. 

3.2. Weakly nonlinear analysis 
In a layer of infinite horizontal extent there is always a disturbance that is unstable if 
r 4 0, and the longest wavelength disturbances will always be 'fully nonlinear' in the 
sense that their spatial structure will not be close to the sinusoidal eigensolution at 
infinitesimal amplitude. Thus the size of r does not determine the degree of 
nonlinearity; indeed the size of E was arbitrary in our original formulation, and we 
could always have chosen E so that Y = 1. If, however, we fix on a minimum 
wavenumber for any possible disturbance (simulating the effects of lateral boundary 
conditions), then for sufficiently small r we can consider weakly nonlinear solutions 
that are close to sinusoidal. If IwoJ 4 min(1, a) we may expand the square bracket in 
(3.15) in powers of w,; retaining only linear and cubic terms (quadratic terms do not 
appear) we find that (3.15) can be approximated by 

, we find that esr+ik.c 

2a r (  3 ac r - - v ; c + - v z  w -- 1+2a+-  V,.(w~V,w,) = 0. aT 2 H 0  (3.18) 

As an example of nonlinear selection, consider the evolution of solutions with period 
2n/a in both [- and 7-directions when r = ro + P r ,  (with 6 a further small parameter; 
we should require in addition that 6 % E so as to avoid consideration of the terms 
neglected in the derivation of (3.14)-(3.15)), c = E, wo = a$, where ro = a 4 2  is the 
critical r for instability at this wavenumber. Then correct to order a2 

c"= c,eia~+c,eia~+c.c., vij = w1eia~+w2eia~+c.c., (3.19) 

where the ci, wi evolve on the slow timescale T = 6%. Then we have from (3.17) 

(3.20) 

and substituting into (3.18) and equating leading-order terms proportional to ei*, eia7 
we obtain the coupled equations 

where F = 1 +2c+  3/a. It can then be shown that the stable solutions of these 
equations take the form of rolls, with either w1 or w2 vanishing (see e.g. Jenkins & 
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Proctor 1984). Thus rolls are preferred to squares near onset, at least in periodic boxes, 
and experience of similar systems suggests that this preference will extend to larger 
values of r.  An exactly analogous calculation can be performed for the interaction of 
three roll solutions with wavenumbers at a mutual angle of 120" (solutions periodic on 
a hexagonal lattice). Denoting the velocity amplitudes by wi, i = 1,2,3 we obtain 

(3.22) 

together with two others obtained by cyclic permutation of the indices. In this case also 
we can show that the stable solution is of roll, not of hexagon type (that is, all but one 
of the wi vanish). The above two cases lend credence to the supposition that roll 
solutions will be realized in a wide variety of circumstances, and so we shall restrict 
ourselves in what follows to solutions depending on only one horizontal coordinate. 

3.3. Spatial structure of steady solutions 
If we now restrict our attention to steady solutions depending on the single space 
variable 5, we can obtain information about fully nonlinear solutions. From (3.14) we 
have 

while periodic solutions of (3.15) with zero mean satisfy 

(3.23) 

(3.24) 

x(x2 - a) 
(1 +x2)(l +~'/a') 

where f'(x) = 

The closed-form expression for f is complicated in the general case, but for a = 1 we 
find 

and the structure of the steady solutions is then given by 

(3.25) 

(3.26) 

This equation has periodic solutions, which can be expressed if desired in terms of 
Jacobian elliptic functions. It may be shown that for any L there is a solution of period 
L for all values of r2 > 8n:2L-2, and these solutions have the property that they are even 
about each extremum and odd about each zero. Note that for ( N +  1)2 > rL2/8n2 > N 2  
(N an integer) there are multiple steady solutions with periods Ln-l for n = 1,2,. . . , N. 
Because of the scale invariance of the system the family of solutions that exists as L 
varies for fixed r can be mapped on to the family of solutions for fixed L as r varies. 

4. Numerical simulations 
= 1, and wo and c 

functions of (&7) only, for various values of r.  A periodic box with length 2n: was taken 
as the computational domain. In this box the critical value of Irl is 2/2, and for Irl 

The system (3.14), (3.15) has been solved numerically for 
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FIGURE 1. Final steady state of roll solutions for r = 3 with box length 2n: (a), c, (b) w. 

slightly larger than this value one would expect a final steady state with just one cell 
pair in the box. For large Irl, however, the mode of maximum growth rate will (from 
(3.17)) have a value of k equal to the integer closest to lr[/2d2. In similar systems (e.g. 
Chapman & Proctor 1980) a value of k close to that for maximum growth rate does 
indeed dominate the initial evolution, but successive instabilities lengthen the 
horizontal scale until there is only one cell pair left in the box. In fact, a precisely 
analogous transition takes place here. 

The equations were solved by discretizing on a uniform mesh, and time stepping 
using a simple explicit Dufort-Frankel scheme. In figure 1 we show the steady state for 
t = 3, for which the long-wavelength mode is the most rapidly growing on linearized 
theory. The subsidiary extrema of c ( 0  are explained by the identification (3.24) in the 
steady case, together with the fact that Ax) (equation (3.25)) has a maximum as a 
function of x. Figure 2 shows a run with r = 10, and the initial condition 

w,, = O.Ol(sinx+sin2x), c = 0. 

In this case the sin2x mode is the most rapidly growing and the solution quickly 
reaches an intermediate state which nearly obeys the symmetry of the pure sin2x 
solution. After a relatively long quasi-static period, however, the secondary extrema 
disappear and we are left with a mode obeying the sinx symmetry, which resembles 
that for r = 3 but with more extreme boundary-layer features. 

5. Discussion 
In this short paper have reduced the study of a subset of the weakly nonlinear, long 

horizontal wavelength motions that arise from the BN instability to a set of coupled 
partial differential equations in the horizontal coordinates only. We could also have 
included slow vertical variation of all quantities, but this would have led to a system 
scarcely simpler than the full nonlinear equations of motion and heat conduction; in 
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FIGURE 2. (a) Intermediate state of roll solution for P = 10. Note that this is not a steady solution since 
the functions are not yet symmetrical about all their extrema. (6) Final steady state for r = 10 showing 
the same wavelength as in the r = 3 case. The box length is again 2x.  (i) c, (ii) w. 

any case we rely on the result that vertically modulated modes are more stable on 
linearized theory than those studied here. The reduced system has made it possible to 
make predictions about the preferred planform of the instability, though at larger 
amplitudes only a fully two-dimensional numerical solution would yield definitive 
information. The system (3.14H3.15) can also be used to show that nonlinear 
wavelength selection acts to produce long horizontal scales, even if these are longer 
than the mode of maximum growth rate according to linearized theory. 
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Finally, we note that the methods used here could be extended to the other vertical 
temperature variations in the basic state, such as the central-layer type considered in 
BN, producing similar equations, though the calculations would be less straightforward 
and the coefficients different. 
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is supported by the UK SERC. 
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